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MOTIVATION

Turbine Cooling — Where did we come from?
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MOTIVATION

Turbine Cooling — Where did we come from?
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MOTIVATION

State-of-the-Art in Turbine Cooling — Where are we now?
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State-of-the-Art in Turbine Cooling — Where are we now?
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MOTIVATION

State-of-the-Art in Turbine Cooling — Where are we now?
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Manufacturing Process — Investment Casting
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B  MOTIVATION

Manufacturing Process — Laser Drilling and plunge EDM

Photo courtesy PRIMA/Laserdyne




@  CRITICAL NEED

Topic #3 from the 2015 UTSR FOA: “The ke\,2 aI of this
topic area is to support the developme nced

Internal cooling strategl
Impingement for airfoi I|

cooling techniauas. .. \ e | ot
tempere ik '" ‘

co /f T PE¥increase turbine
ofo) | PPhg even more advanced,
efficig eci@ie CY0ling techniques. Therefore,
resea / ded in this topic area that can support
manu¥Ecturers as they design hot gas path

components with sufficient cooling capabilities.”

Where will these advances come from... 5
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i Direct Metal Laser Sintering

DMLS Process
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i Direct Metal Laser Sintering

Can you fabricate a cooled turbine blade with DMLS?

DMLS Turbine Blade Micro-Machining Process
e e -

Just how small can the features be?
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The investment General Electric Co. is making in its Pittsburgh-area additive
manufacturing facility speaks to the level of interest and dedication the company
has in 3-D printing technology, according to Greg Mortis, general manager for
additive technologies at GE Aviation.

The whole idea behind the 125.000-square-foot research center the company is in
the process of building in Findlay Township is to be a testing ground for different
businesses 1o tap into addirive technologies being in developed in areas like
aviation to spread the technology throughout GE (NYSE: GE) businesses.

Greg Morris, speaking Oct. 1ata
conference hosted by Catalyst

Connection.

SCOTT DIETZ

It is the largest center of its kind focused on additive in GE's operartions, according
1o Morris. The facility represents a $32 million investment over three years and
will create 50 high-tech engineering jobs initiallv. the company said when the
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for the facility's opening.

"From prototyping to tooling there are many opportunities to use addirive
throughout GE's business 1o make us more efficient and reduce overall costs,”
Morris said in an interview with the Pittsburgh Business Times.

GE Aviation already has made a big bet in additive manufacturing. The
company's CFM LEAP jet engine features a 3-D printed fuel nozzle that took a
part that required 20 different components to be manufactured and assembled,
and replaced it with a single printed part. GE is v in the process of scaling up for
production at its facility in Auburn, Ala.. and expects to produce the nozzles at a
rate of 40,000 per year. according to Morris.

Morris, who is based in Cincinnati, said his group is one of several that will work
with the researchers and engineers at the new facility.

'[ think it's going to allow for a more fundamental look as an emerging capability
to think abour how we can design parts differently,” he said.

With additive manufacturing on the brink of becoming mainstream and playving
such an emerging role in Pittsburgh. it's important for manufacturers of all sizes
1o take notice, said Petra Mitchell, president and CEO of Catalyst Connection.

"If vou look at Alcoa's investment. GE's investment, and the fact thart the National
Addirive Manufacturing Institute, America Makes, is so close by, this region
becoming a hub for additive manufacturing,” she said.

Om Sept. 3 Alcoa Inc. announced it would be investing $60 million in its
Pittsburgh-area research and development facility in order to expand the
company's additive manufacturing capabilities.

For the companies her organization works with, which are largely small and
mid-size manufacturers, Mitchell said most are still rving to figure out how
addirtive is going to impact their business.

"I think the initial investment is in learning and evaluating what this means for
their particular business,” she said.

Morris joined GE in 2012 when the company acquired two of his companies,
Morris Technologies and Rapid Quality Manufacturing. He said that from a
creative aspect, additive should be challenging companies of all sizes.

"Additive is another rool in the toolbox that allows for greater creativiry, whether
vou're leveraging the technology to launch or start a small company, or it's
enabling the largest of corporate entities rethink they way they do things,” he
said.

Justine Coyne covers manufacturing and higher education.

Get Contact Information for General Electric Company. NewsLeads
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) OBJECTIVES

« Explore innovative cooling architectures enabled by additive
manufacturing techniques for improved cooling performance
and reduced coolant waste.
* Leverage DMLS to better distribute coolant through
microchannels, as well as to integrate inherently unstable flow
devices to enhance internal and external heat transfer.
« Demonstrate these technologies
1. atlarge scale and low speed.
2. atrelevant Mach numbers in a high-speed cascade.
3. finally, at high speed and high temperature.
« Complement experiments with CFD modeling to explore a
broader design space and extrapolate to more complex
operating conditions.

14




OHIOR

UNIVERSITY

B RESEARCH TEAM

TEAM LEAD

Focus: Experimental
Fluid Mechanics and
Heat Transfer

Co-PI

Focus: Computational
Fluid Dynamics and
Heat Transfer

Co-PI

Focus: Experimental
Fluid Mechanics,
Fluidic Oscillator
Development

Dr. Jeffrey Bons

Professor

Department of Mechanical and
Aerospace Engineering

Ohio State University
Columbus, OH

Dr. Ali Ameri

Research Scientist

Department of Mechanical and
Aerospace Engineering

Ohio State University
Columbus, OH

Dr. Jim Gregory

Associate Professor
Department of Mechanical and
Aerospace Engineering

Ohio State University
Columbus, OH

Robin Prenter
PhD Candidate

Arif Hossain
PhD Candidate

15




UNIVERSITY

O iCooling Designs Enabled by DMLS
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iCooling Designs Enabled by DMLS
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lCooling Designs Enabled by DMLS

Sweeping Fluidic Oscillators for flow control

« {\
a ' I S,
st —C=—

1 / Failed Deflected rudder & ailerons ‘
- engine

will create extra drag

...and many other applications...




S iCooling Designs Enabled by DMLS
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7Sweeping Fluidic Oscillators
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%11% iCooling} Designs Enabled by DMLS
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%'1'%% - Potential Concerns with DMLS

Stimpson et al. (IGTI12015)

* Microchannel array — additive manufacturing.
 Elevated roughness levels

* High pressure drop for same heat transfer
augmentation

» Natural “roughness” obviates need for ribs.

alAx-Co +L-2x-Co = Angled groove-large pitch [30]
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Innovative Cooling Designs

Combine all technologies on single NGV.
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¢ Turbine Heat Transfer Facilities

UNIVERSIT

* For innovative concepts to be viable, must be
vetted in facilities that simulate the real
operating environment

* Graduated complexity
— Low speed, large scale

— High speed, smaller scale
— High speed, high temperature, small scale
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SATER Transonic Turbine Cascade
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e (Cascade operates in “blow-down” mode. High pressure supplied
from large high pressure reservoirs, exhausts to ambient (without
High exit ejector).
Pressure
Air * Size: compromise between adequate resolution for flow

investigations and capacity of air supply system.

* Maximum optical access

. * Modular construction to allow new
“ ” ' R~ blade designs

* Ejector allows reducing exit pressure
(Reynolds number)




T*H-+E

OHIO

SIATE Transonic Turbine Cascade

* Adjustable tailboards to insure periodicity

* Choked bar array in exit duct insures Mach
number distribution in the cascade
independent of Reynolds number
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OSU’s Turbine Reacting Flow Rig (TURFR)

Natural gas burning
combustor rig

Combustor exit flow
accelerated in cone nozzle

Transition from circular to
annular sector

Real vane hardware
(industry supplied) installed
in annular cascade sector

Tt4 up to 1120° C

(2050° F)

Inlet Mach number ~ 0.1
300,000 < Re_,,< 1,000,000
Adjustable inlet
temperature profiles

Adjustable inlet turbulence
profiles (through dilution
jets)

Film cooling from vane
casing and hub (density
ratio 1.6-2.0)

- \Vane Holder

View Section

v\l Viewports
\ Transition
Piece
Sealing
System
\\
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TuRFRII
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.i PHASE 1: Concept Exploration

Use available literature to identify most promising cooling designs:

o Pulsed fluidic oscillators for internal cooling of leading and trailing
edges

o Sweeping fluidic oscillators for external film cooling

o Reverse flow film cooling for pressure surface

o Microcooling circuits

Low-speed wind tunnel testing with scaled geometry

o Characterize cooling effectiveness and heat transfer

o Test variants of geometry to determine optimum

o Test sensitivity of each design to manufacturing tolerances

Develop computational models of each cooling design

o Generate flow solutions for each initial geometry

o Validate solutions with experimental data from initial geometry

o Explore design space and aid in optimization of geometry for each
design

Determine most promising and feasible technologies for Phase 2

based on experimental and computational results




I"PHASE 2: Integrated SLLA Vane

Implement most promising technologies into preliminary nozzle guide
vane design
Develop computational model of preliminary vane design in high-speed
cascade
Generate flow solutions at various operating conditions
Modify preliminary vane design per computational results
Fabricate properly scaled plastic vanes with stereolithography (SLA)
using modified design
Test fabricated vanes in high-speed cascade
o Characterize flow and heat transfer at various operating conditions
o Determine compressibility effects
Validate flow solution using experimental data
Iterate back to low speed testing as necessary
Generate flow solutions for final Phase 3 design at higher inlet Mach
numbers and Reynolds numbers




Omo PHASE 3: Fully Simulated NGV

IN'.I.\'E'S'.IT'I'

Fabricate high-temperature alloy vane using DMLS
Coat vane in thermal barrier coating (TBC)
Characterize surface roughness and tolerances due to manufacturing
method
Test full material system in the TURFR turbine test facility
o Characterize cooling performance and pressure drop at various
coolant mass flow rates
o Characterize cooling performance at various main flow conditions
Compare new vane design performance to conventional vane at same
coolant and main flow operating conditions to determine improvement
Develop computational model of coated NGV
o Generate and validate flow solution in context of TURFR testing
o Generate simulations at higher temperatures and pressures not
possible in the facility




il Accomplishments to date

« Literature Search
 CFD Study
* Fluidic Oscillator development/preliminary study

* Reverse film cooling preliminary study




Motivation for CFD

CFD can be used to elucidate and complement
experimental results and to inform the flow
physics?

Allows for extrapolation of flow outside the
pressure and temperature limits of experiments.

Allows exploration of the broader design space to
find promising combinations of feasible variables
for the application.

We plan to use CFD at every stage of our research.




CFD Methods Utilized

CFD is a research tool not a goal.

Our team has demonstrated capability to use
various CFD methods for solving fluid flow and heat
transfer problems relevant to gas turbine flows.

The CFD, as much as possible, will be validated by
the experiments to ensure accuracy.

Any of RANS, URANS, DES or LES will be used, as
needed, with structured or unstructured or
meshless methods.




S Capabilities

The team has been engaged in computational
analysis of many types of flows and heat
transfer analyses both steady and unsteady.

 Examples follow:
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Tip Gap Modeling

Computed flow
! traces and heat
transfer in a
' ' turbine rotor
tip clearance

gap

7

*Blade and Tip Heat Transfer

(Shyam and Ameri, 1998)
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Three Dimensional film-
Film Cooled Heat Transfer Results  cooled blade analysis

SUCTION SIDE PRESSURE SIDE

STREAMLINES, COLORED BY TEMPERATURE, EMANATING FROM HOLES OVER THE COOLED BLADE SURFACE
WITH DISTRIBUTION OF h
GARG

« Blade film cooling (G 1999)
arg,
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sInternal Heat Transfer

(Rigby and Bunker, 2002)
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Conjugate Heat Transfer

wall temperatures
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Hot Streak Clocking Study
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CAPABILITIES Rotor/Stator Interaction and Deposition bl-lllO
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Efficient Cooling

Will seek to improve cooling by using methods that are
more coolant efficient.

Using fluidic devices can reduce blow off and the
sweeping action can improve spanwise uniformity .

Fluidic devices can be made to film cool by sweeping or
impingement cool by pulsing.

Reverse blowing may be an effective way of film
cooling at high blowing-ratios.

Internal micro-channels are shown to be capable of
being more effective than impingement cooling.




%% Square, 777 and Fluidic Methods

a, Squsre BR= 15

Sweeping Fluidic Oscillators
(Thurman, Poinsatte, Ameri,
Culley, Raghu, Shyam IGTI2015)
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FIGURE 19. SPANWISE PLOTS OF ADIABATIC
EFFECTIVENESS AT BR=2.5 AT X'D=10.




3D grid used for fluidic-oscillator
driven film hole computation

SNAPSHOTS OF MACH NUMBER IN

MID-PLANE OF FLUIDIC HOLE FROM

UNSTEADY 3D CFD AT BR=2.0
(BLUE=0, RED=0.45)
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" Film Cooling (777 Hole)
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Choice of model and method determines the outcome.




Conclusions

« Validated CFD will be used, side by side, with bench
top and more physically realistic configurations to
extend the design space and explore more realistic
physical conditions.

 We have the availability and have developed the
expertise and gained the experience to perform such
analyses using various steady and unsteady CFD
methods to fulfil this task.
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1. CAD design
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Sweeping Fluid Oscillator

4. Schlieren

53




Gantt Chart

Year 1

Year 2

Year 3

Phase 1

- Literature Review
- Low speed model
testing

- CFD models

- Downselect for
Phase 2 model

Phase 2

-- Incorporate designs
into NGV

- Model NGV in CFD

- Fabricate SLA model
- Test in transonic
cascade

- Iterate on design

Phase 3

- Fabricate DMLS
NGV with TBC
-Test DMLS NGV in
TuRFR

- Develop/validate
CFD model
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